On the strong consistency of asymptotic M-estimators

نویسندگان

  • Djalil Chafai
  • Didier Concordet
چکیده

The aim of this article is to simplify Pfanzagl’s proof of consistency for asymptotic maximum likelihood estimators, and to extend it to more general asymptotic M -estimators. The method relies on the existence of a sort of contraction of the parameter space which admits the true parameter as a fixed point. The proofs are short and elementary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Asymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution

Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...

متن کامل

83 5 , v er si on 2 - 1 4 Se p 20 06 On the strong consistency of asymptotic M - estimators

The aim of this article is to simplify Pfanzagl’s proof of consistency for asymptotic maximum likelihood estimators, and to extend it to more general asymptotic M -estimators. The method relies on the existence of a sort of contraction of the parameter space which admits the true parameter as a fixed point. The proofs are short and elementary.

متن کامل

Se p 20 06 On the strong consistency of asymptotic M - estimators

The aim of this article is to simplify Pfanzagl’s proof of consistency for asymptotic maximum likelihood estimators, and to extend it to more general asymptotic M -estimators. The method relies on the existence of a sort of contraction of the parameter space which admits the true parameter as a fixed point. The proofs are short and elementary.

متن کامل

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015